
Korea Linux Forum
12 November 2013

Presentation by Grant Likely

UEFI+Linux on ARM
Making it Just Work

Slide 2

Agenda

 Introduction
 Rationale

 Enterprise
 Mobile
 Embedded

 Boot Sequence
 Runtime Services
 Device Tree, ACPI and SMBIOS
 Current Status
 Future Work?
 Questions

Slide 3

Rationale: Enterprise

 New ARM enterprise products
 Competing with x86 platforms

 Any gratuitous difference from x86 is a cost
 For vendors – Engineering and manufacturing tools won't carry over

 For customers – Integrating into data centre requires new knowledge

 UEFI and U-Boot behave very differently
 U-Boot

 Boot variables specify kernel, initrd and command line

 Currently no default behaviour for booting automatically

 UEFI

 Specification for how to choose boot device.

 Specification for ABI and execution environment.

Slide 4

Rationale: Enterprise

 ARM servers should behave the same
 Use same firmware ABI – UEFI

 Use same hardware description ABI – ACPI

 Use same interfaces

 Network boot – DHCP, and TFTP of UEFI executable

 Block device – GPT Partition table, FAT system partition

 Secure Boot – Ship in Setup Mode, as is appropriate for server machines

 Firmware device drivers – same ABIs

 Same software stack

 Second stage boot selection GRUB, Gummiboot or rEFInd

 UEFI stub embedded in kernel

 How can Linux developers influence UEFI
development?

Slide 5

Rationale: Mobile

 Smart phones have become general-purpose computers
 Abstracted at the userspace level.

 Much of the hardware looks the same anyway
 Big processor, large touch screen, a bunch of sensors and wireless connectivity

 Many SoC vendors provide U-Boot support,

 but handset vendors ship Little Kernel.

 Mostly a licensing issue

 Can the benefit of UEFI on server “trickle down” to the
mobile platforms?

 Familiar development environment

 UEFI adoption in mobile must be organic
 No economic pressure to switch; Cannot be forced

 UEFI must prove itself to be better than alternatives

Slide 6

Rationale: Embedded

 Heavy vertical integration
 Vendor controls entire stack

 Smaller incentive to standardize

 Device-specific customization and builds are common

 For UEFI to be relevant for embedded:
 Must prove itself a better solution

 Must make development easier

 Standardization helps, but is not enough

 Tianocore needs to match U-Boot's healthy community

Slide 7

Boot Sequence: Old Method – LinuxLoader

 ARM Prototype for booting Linux on UEFI
 Built into Tianocore

 Loads initrd and device tree images

 Problems
 Build into UEFI, cannot be updated independently

 No guarantee firmware will provide LinuxLoader

 Not part of UEFI spec

 No runtime services – Linux unaware of UEFI

Linux kernelLinuxLoaderUEFI

Slide 8

Boot Sequence: UEFI Stub

 A UEFI OS Loader embedded into the Linux kernel
 Linux becomes native UEFI PE/COFF binary

 Generalized from x86 Linux EFI_STUB

 Easy to modify

 100% compatible with non-UEFI firmware

 Single kernel image works with both UEFI and U-Boot

Linux kernelEFI_STUBUEFI

Slide 9

Boot Sequence: Embedding the UEFI Stub
 start:
 .type start,#function
- .rept 7
+#ifdef CONFIG_EFI_STUB
+ .word 0x62805a4d @ Magic MSDOS signature
+ @ for PE/COFF + ADD opcode
+#else
+ mov r0, r0
+#endif
+ .rept 5
 mov r0, r0
 .endr
 ARM(mov r0, r0)
 ARM(b 1f)
 THUMB(adr r12, BSYM(1f))
 THUMB(bx r12)
+ THUMB(.thumb)
+1:
+ b zimage_continue

 .word 0x016f2818 @ Magic numbers to help the loader
 .word start @ absolute load/run zImage address
 .word _edata @ zImage end address
+
+ .org 0x3c
+ .long pe_header @ Offset to PE-COFF header

Slide 10

Boot Sequence: GRUB

 Combines boot menu, OS loader and filesystem drivers

 Linux distributions already use GRUB
 Familiar to users

 Also boots non-Linux
 Xen

 *BSD

 Complex boot scenarios
 ie. kernel and initrd from different sources

 Substitute Gummiboot or rEFInd here

UEFI GRUB Linux kernelEFI_STUBUEFI

Slide 11

Boot Sequence: Filesystem Drivers

 Native filesystem drivers
loaded at boot time

 rEFInd maintains drivers
 EXT4

 BTRFS

 ISO-9660

 Works on ARM
 nobody currently providing binaries

UEFI GRUB Linux kernelEFI_STUB

Linux
ext4

System
Partition

Local Storage

 EXT4
 driver

Slide 12

Boot Sequence: Kernel Entry

 UEFI Stub will:
 Attempt to find an FDT pointer in the system table

 Generate an empty FDT if necessary

 Store kernel boot arguments in FDT

 System table pointer

 UEFI memory map

 Initrd pointer

 Kernel command line

 Call ExitBootServices()

 Jump to kernel entry point

 In turn, stub calls normal kernel entry point
 32-bit: r2 = Flattened Device Tree (FDT) pointer

 64-bit: x0 = Flattened Device Tree (FDT) pointer

 What about ACPI?
 FDT is still passed to the kernel, but limited to kernel arguments

 ACPI pointer stored in UEFI configuration table.

Slide 13

Runtime Services

 Limited OS interaction with UEFI
 Query/Set time of day & Wakeup time

 Query/Set UEFI variables

 Capsule service

 Required to configure boot
 grub_install & efibootmgr

 Linux must:
 Obtain UEFI system table

 Retrieve UEFI memory map

 Use UEFI runtime calling convention

 Call SetVirtualAddressMap() to provide
UEFI with memory map

UEFI GRUB Linux kernelEFI_STUB

typedef struct {
 EFI_TABLE_HEADER Hdr;
 CHAR16 *FirmwareVendor;
 UINT32 FirmwareRevision;

 EFI_HANDLE ConsoleInHandle;
 EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;
 EFI_HANDLE ConsoleOutHandle;
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut;
 EFI_HANDLE StandardErrorHandle;
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;

 EFI_RUNTIME_SERVICES *RuntimeServices;
 EFI_BOOT_SERVICES *BootServices;

 UINTN NumberOfTableEntries;
 EFI_CONFIGURATION_TABLE *ConfigurationTable;
} EFI_SYSTEM_TABLE;

Slide 14

Runtime Services: Virtual Address Map Pain

 SetVirtualAddressMap() requires all UEFI code to
correctly update internal pointer references

 Easy to make mistakes

 Stray pointer references can corrupt Linux data structures if not protected

 Sleepy vendors won't patch firmware bugs

 Doesn't play well with kexec
 Can only be called once

 New kernel forced to use same map as old one

 What do we do?
 Use SetVirtualAddressMap() anyway and live with bugs?

 Use separate page tables when executing runtime services?

 Don't support runtime services in Linux?

Slide 15

Runtime Services: Virtual Address Map Pain

Physical memory

runtime code

runtime data

Virtual

runtime code

runtime data

kernelspace

boot code

boot data

Stale code pointer

Stale data pointer

Stale boot code pointer

Stale boot data pointer

runtime code

runtime data

UEFI Sandbox

Device IO

Device IO

Device IOStale IO

Slide 16

Platform Configuration

 Loaded by UEFI

 Provided via System Table
 SMBIOS

 ACPI

 Flattened Device Tree

typedef struct {
 EFI_TABLE_HEADER Hdr;
 CHAR16 *FirmwareVendor;
 UINT32 FirmwareRevision;

 EFI_HANDLE ConsoleInHandle;
 EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;
 EFI_HANDLE ConsoleOutHandle;
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut;
 EFI_HANDLE StandardErrorHandle;
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;

 EFI_RUNTIME_SERVICES *RuntimeServices;
 EFI_BOOT_SERVICES *BootServices;

 UINTN NumberOfTableEntries;
 EFI_CONFIGURATION_TABLE *ConfigurationTable;
} EFI_SYSTEM_TABLE;

typedef struct{
 EFI_GUID VendorGuid;
 VOID *VendorTable;
} EFI_CONFIGURATION_TABLE;

Slide 17

ACPI or Flattened Device Tree

 Doesn't UEFI mean ACPI?
 No!

 FDT works today with UEFI

 Kernel supports both ACPI and FDT
 FDT is not going away any time soon

 Platform can supply either ACPI or FDT
 Not both!

 If platform provides both then the FDT shall be ignored

Slide 18

A note on development philosophy
 Some things you may have noticed:

 UEFI Stub doesn't break U-Boot

 UEFI works with FDT and ACPI

 ACPI doesn't disable FDT

 X86 and ARM share UEFI Stub implementation

 As much as possible, ARM UEFI behaves the same as x86 UEFI

 Breaking users is unfriendly

 Clear migration paths are important
 By design, all the new development has been done in a way that doesn't

required old features to be turned off

 Want to make it as easy as possible for developers to get started with UEFI

Slide 19

Other Topics: Virtualization

 UEFI must call OS Loader (stub) in HYP/EL3 mode
 64-bit (v8): EL2

 Implemented and working

 32-bit (v7a): Hypervisor mode

 Proposal drafted and debated

 Requires new protocol to elevate permission

 Not implemented due to lack of interest

 KVM works on both

Slide 20

Other Topics: Security

 Secure Boot
 All functionality exists in Tianocore

 Strongly recommend shipping hardware in Setup Mode

 Hardware requires secure storage

 TrustZone
 ARM recommends Generic Secure Firmware

 Power State Coordination Interface (PSCI)

Slide 21

Current State

arm arm64

GRUB-EFI In mainline In development

EFI_STUB Working, Merged soon Working, under review

Runtime services Working, Merged soon Working, under review

Filesystem drivers Tested

ACPI Prototype, patches avaliable Prototype, patches
avaliable

Secure Boot Investigating Investigating

Hypervisor support Prototype patches available
no further work planned

In mainline

Slide 22

Future Work

 Upstreaming completed work

 Board ports

 Features desired/expected by embedded

 Kexec support

 Working with upstream Tianocore

Slide 23

Resources

 https://wiki.linaro.org/LEG/Engineering/Kernel/UEFI

 http://tianocore.sourceforge.net

 http://www.uefi.org

 https://wiki.linaro.org/LEG/Engineering/Kernel/ACPI

 http://sourceforge.net/apps/mediawiki/tianocore/index.p
hp?title=ArmPlatformPkg

Slide 24

 Thank you to the following organizations and people
 Linaro Enterprise Group and Linaro member companies sponsoring this

work

 UEFI Team: Leif Lindholm, Roy Franz, Mark Salter, Yi Li, Reece Pollack, Rony
Nandy, Steven Kinney

 ACPI Team: Al Stone, Graeme Gregory, Hanjun Guo, Naresh Bhat, Tomasz
Nowicki

 Ryan Harkin, Olivier Martin

 UEFI Forum which has been a great organization to work with

 Linux Foundation for providing me the opportunity to speak

 Many Others

Acknowledgements

Slide 25

Questions?

Slide 26

Additional Material

Slide 27

Linaro Overview

 Linaro is a not for profit software engineering company
 Members are ARM SoC vendors and other companies

interested in the ARM ecosystem
 Rather than each company duplicating open source effort for

common software, the cost is shared between competitors,
and the software is built once

 The work is carried out in the open, and the results are
extensively tested and then upstreamed into the relevant
open source projects – e.g. kernel.org

Slide 28

Linaro Enterprise Group

 Formed in November 2012

 Working on core open-source
software for ARM servers

 Boot architecture – UEFI/ACPI

 Virtualization – KVM/Xen

 ARMv8 bringup & optimization

 LAMP, OpenJDK, Hadoop, OpenStack

 Reduces costs, eliminates
fragmentation, accelerates time
to market

 Members can focus on innovation
and differentiated value-add

http://www.linaro.org/engineering/leg

Group Members

