
11

Taking Linux File and Storage
Systems into the Future

Ric Wheeler
Director
Kernel File and Storage Team
Red Hat, Incorporated

2

Overview

2

● Going Bigger

● Going Faster

● Support for New Hardware

● Current Areas of Focus

● Resources & Questions

Going Bigger

Storage and Servers Continue to Grow

● File system need to support ever larger storage
devices
● Individual S-ATA disks are now 6TB
● New Shingled (SMR) drives will be even larger!

● Storage arrays, hardware RAID cards and software
LVM combine drives into an even larger block device
● Normal shelf of drives is 12 drives
● Allows 10 data drives (with 2 parity) for RAID6
● 40-60 TB per shelf!

Why Use a Single, Large File System?

● A single file system is easy for users and applications
● Space is in a common pool

● A single file system can perform better than multiple
file systems
● Rotating storage must minimize disk head movements
● Carving up a single S-ATA drive or RAID set with S-

ATA makes disk heads jump between file systems

Challenges with a single file system

● System operations take a lot longer
● Backup and restore scale with the size
● File system repair can take a very long time

● Larger file systems can require larger servers
● Doing a file system repair on a 100TB file system pulls

in a lot of metadata into DRAM
● Must use servers with sufficient DRAM to prevent

paging
● Metadata can be a high overhead

● Keeping size of structures down is critical when talking
about millions or billions of files per file system!

Going Faster

8

9

Early SSD's and Linux

● The earliest SSD's look like disks to the kernel
● Fibre channel attached high end DRAM arrays (Texas

Memory Systems, etc)
● S-ATA and SAS attached FLASH drives

● Plugged in seamlessly to the existing stack
● Block based IO
● IOP rate could be sustained by a well tuned stack
● Used the full block layer
● Used a normal protocol (SCSI or ATA commands)

10

PCI-e SSD Devices

● Push the boundaries of the Linux IO stack
● Some devices emulated AHCI devices
● Many vendors created custom drivers to avoid the

overhead of using the whole stack
● Performance challenges

● Linux block based IO has not been tuned as well as
the network stack to support millions of IOPS

● IO scheduling was developed for high latency devices

Performance Limitations of the Stack

● PCI-e devices are pushing us beyond our current
IOP rate
● Looking at a target of 1 million IOPS/device

● Working through a lot of lessons learned in the
networking stack
● Multiqueue support for devices
● IO scheduling (remove plugging)
● SMP/NUMA affinity for device specific requests
● Lock contention

● Some fixes gain performance and lose features

Block Level Caching Schemes

● Bcache from Kent Overstreet
● http://bcache.evilpiepirate.org

● A new device mapper dm-cache target
● Simple cache target can be a layer in device mapper

stacks.
● Modular policy allows anyone to write their own policy
● Reuses the persistent-data library from thin

provisioning
● Vendor specific caching schemes

http://bcache.evilpiepirate.org/

Support for New Hardware

Persistent Memory

● A variety of new technologies are coming from
multiple vendors

● Critical feature is that these new parts:
● Are byte addressable
● Do not lose state on power failure

● Critical similarities are that they are roughly like
DRAM:
● Same cost point
● Same density
● Same performance

Similarities to DRAM

● If the parts are the same cost and capacity of DRAM
● Will not reach the same capacity as traditional,

spinning hard drives
● Scaling up to a system with only persistent memory

will be expensive
● Implies a need to look at caching and tiered storage

techniques
● Same performance as DRAM

● IO performance scales with the number of parts
● Will press our IO stack to reach the maximum

performance of PM

16

Persistent Memory & Byte Aligned
Access

● DRAM is used to cache all types of objects – file
system metadata and user data
● Moving away from this model is a challenge
● IO sent in multiples of file system block size
● Rely on journal or btree based updates for consistency
● Must be resilient over crashes & reboots
● On disk state is the master view & DRAM state differs

● These new devices do not need block IO

SMR Overview

● A new areal density enabling technology called
Shingled Magnetic Recording (SMR)
● Industry vendors are working collaboratively on

external interfaces
● Vendors will differentiate on implementations

● SMR alters throughput and response time
● Especially for random write IO

● Industry is looking for feedback from the Linux
community on T10 proposals

SMR Drive Write Bands

● Random write enabled bands
● Might not exist at all on some implementations
● Could be first and last band
● Place to store metadata, bitmaps, etc

● Sequential write bands
● Can be written only in order
● Write pointer is tracked per band
● Full band reset done when a band's data is all stale

Current Area of Focus

22

Device Driver Choice
● Will one driver emerge for PCI-e cards?

● NVMe: http://www.nvmexpress.org

● SCSI over PCI-e: http://www.t10.org/members/w_sop-.htm

● Vendor specific drivers
● Most Linux vendors support a range of open drivers

● Open vs closed source drivers
● Linux vendors have a strong preference for open

source drivers
● Drivers ship with the distribution - no separate

installation
● Enterprise distribution teams can fix code issues

directly

http://www.nvmexpress.org/
http://www.t10.org/members/w_sop-.htm

Scaling Up File Systems

● Support for metadata checksumming
● Makes file system repair and corruption detection

easier
● Support for backpointers

● Btrfs can map sector level errors back to meaningful
objects

● Let's users turn map an IO error into knowledge about
a specific file for example

Making BTRFS Ready for Enterprise
Users

● Slowing the inclusion of new features
● Focus on bug fixing and performance enhancements
● Fixing static analysis reported bugs

● Chris Mason is releasing a new, more powerful
version of the btrfs user space tools

● Extensive enterprise vendor testing
● Focus on most promising use cases

Ease of Use

● Linux users have traditional been given very low level
tools to manage our storage and file systems
● Very powerful and complicated interface
● Well suited to sophisticated system administrators

● Too complicated for casual users
● Exposes too much low level detail
● User must manage the individual layers of the stack

2626

High Level Storage Management Projects

● Storage system manager project
● CLI for file systems
● http://storagemanager.sourceforge.net

● openlmi allows remote storage management
● https://fedorahosted.org/openlmi/
● http://events.linuxfoundation.org/images/stories/slides/l

fcs2013_gallagher.pdf
● Ovirt project focuses on virt systems & their storage

● http://www.ovirt.org/Home
● Installers like yast or anaconda

http://storagemanager.sourceforge.net/
https://fedorahosted.org/openlmi/
http://events.linuxfoundation.org/images/stories/slides/lfcs2013_gallagher.pdf
http://events.linuxfoundation.org/images/stories/slides/lfcs2013_gallagher.pdf
http://www.ovirt.org/Home

2727

Low Level Storage Management Projects

● Blivet library provides a single implementation of
common tasks

● Higher level routines and installers will invoke blivet
● https://git.fedorahosted.org/git/blivet.git
● Active but needs documentation!

● libstoragemgt provides C & Python bindings to manage
external storage like SAN or NAS

● http://sourceforge.net/p/libstoragemgmt/wiki/Home
● Plans to manage local HBA's and RAID cards

● Liblvm provides C & Python bindings for device
mapper and lvm

● Project picking up after a few idle years

https://git.fedorahosted.org/git/blivet.git
http://sourceforge.net/p/libstoragemgmt/wiki/Home

2828

Future Red Hat Stack Overview

Kernel

Storage Target

Low Level Tools:
LVM,

Device Mapper,
FS Utilities

Anaconda
Storage System
Manager (SSM)

Vendor Specific Tools
Hardware RAID
Array Specific

OVIRT OpenLMI

LIBSTORAGEMGT

BLIVET

LIBLVM

Getting Read for Persistent Memory

● Application developers are slow to take advantage of
new hardware
● Most applications will continue to use read/write “block

oriented” system calls for years to come
● Only a few, high end applications will take advantage

of the byte addressable capabilities
● Need to hide the persistent memory below our

existing stack
● Make it as fast and low latency as possible!

Persistent Memory Current Work

● Block level driver for persistent memory parts
● Best is one driver that supports multiple types of parts
● Multiple, very early efforts

● Enhance performance of IO path
● Leverage work done to optimize stack for PCI-e SSD's
● Target: millions of IOP's?

● Build on top of block driver
● Block level caching
● File system or database journals?
● As a metadata device for device mapper, btrfs?

Persistent Memory Standards

● Storage Network Industry Association (SNIA)
Working Group on NVM
● Working on a programming model for PM parts
● http://snia.org/forums/sssi/nvmp

● New file systems for Linux being actively worked on
● Will be as painful as multi-threading or teaching

applications to use fsync()!
● Fsync() live on

– Volatile data lives in CPU caches and needs flushed

http://snia.org/forums/sssi/nvmp

Handling Drive Managed SMR

● Have the drive vendors simply hide it all from us!

● Vendors need to add hardware and software
● Must to virtual to physical remapping similar in some

ways to SSD vendors
● Will increase the costs of each drive
● Hard to get the best performance

● Some vendors are shipping these SMR drives today

● No changes needed for Linux or other OS platforms

Host Aware SMR

● Host is aware of SMR topology at some layer
● Avoids sending writes that break the best practices for

SMR
● Write that violates SMR have unpredictable (probably

low!) performance
● Allows drives to minimize hardware/software and

have reasonable performance as long as most writes
behave

● Works with existing operating system stack

Restricted SMR

● Host is aware of SMR topology
● Only write IO's that follow the SMR rules are allowed
● Non-obedient writes will be rejected by the SMR drive

● Minimal hardware and software needed on the SMR
drive
● All of the effort is shifted to the operating system stack

● Would not work with existing operating systems and
file systems in most cases

SMR Ongoing Work

● Make an SMR device mapper target to hide device
from file systems
● Might support the restricted mode SMR

● Tweak and tune existing file systems to write mostly
sequentially
● Would be the quickest path forward
● Would support host aware

Bringing SMR and PM Together

● Use the persistent memory as a block level caching
device
● SMR drive (or RAID stripe of SMR drives) as high

capacity bulk storage
● Persistent memory only client machines

● Access bulk data via NFS or iSCSI on high capacity
servers with SMR drives

● Application level combinations

37

Resources & Questions

● Resources
● Linux Weekly News: http://lwn.net/
● Mailing lists like linux-scsi, linux-ide, linux-fsdevel, etc

● SNIA NVM TWG
● http://snia.org/forums/sssi/nvmp

● Storage & file system focused events
● LSF workshop
● Linux Foundation & Linux Plumbers Events

http://lwn.net/
http://snia.org/forums/sssi/nvmp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

