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Going Bigger



  

Storage and Servers Continue to Grow

● File system need to support ever larger storage 
devices
● Individual S-ATA disks are now 6TB
● New Shingled (SMR) drives will be even larger!

● Storage arrays, hardware RAID cards and software 
LVM combine drives into an even larger block device
● Normal shelf of drives is 12 drives
● Allows 10 data drives (with 2 parity) for RAID6
● 40-60 TB per shelf!



  

Why Use a Single, Large File System?

● A single file system is easy for users and applications
● Space is in a common pool

● A single file system can perform better than multiple 
file systems
● Rotating storage must minimize disk head movements
● Carving up a single S-ATA drive or RAID set with S-

ATA makes disk heads jump between file systems



  

Challenges with a single file system

● System operations take a lot longer
● Backup and restore scale with the size
● File system repair can take a very long time

● Larger file systems can require larger servers
● Doing a file system repair on a 100TB file system pulls 

in a lot of metadata into DRAM
● Must use servers with sufficient DRAM to prevent 

paging
● Metadata can be a high overhead

● Keeping size of structures down is critical when talking 
about millions or billions of files per file system!



  

Going Faster
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Early SSD's and Linux

● The earliest SSD's look like disks to the kernel
● Fibre channel attached high end DRAM arrays (Texas 

Memory Systems, etc)
● S-ATA and SAS attached FLASH drives

● Plugged in seamlessly to the existing stack
● Block based IO
● IOP rate could be sustained by a well tuned stack
● Used the full block layer
● Used a normal protocol (SCSI or ATA commands)
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PCI-e SSD Devices

● Push the boundaries of the Linux IO stack
● Some devices emulated AHCI devices
● Many vendors created custom drivers to avoid the 

overhead of using the whole stack
● Performance challenges

● Linux block based IO has not been tuned as well as 
the network stack to support millions of IOPS

● IO scheduling was developed for high latency devices



  

Performance Limitations of the Stack

● PCI-e devices are pushing us beyond our current 
IOP rate
● Looking at a target of 1 million IOPS/device

● Working through a lot of lessons learned in the 
networking stack
● Multiqueue support for devices
● IO scheduling (remove plugging)
● SMP/NUMA affinity for device specific requests
● Lock contention

● Some fixes gain performance and lose features



  

Block Level Caching Schemes

● Bcache from Kent Overstreet
● http://bcache.evilpiepirate.org

● A new device mapper dm-cache target
● Simple cache target can be a layer in device mapper 

stacks.
● Modular policy allows anyone to write their own policy
● Reuses the persistent-data library from thin 

provisioning
● Vendor specific caching schemes

http://bcache.evilpiepirate.org/


  

Support for New Hardware



  

Persistent Memory

● A variety of new technologies are coming from 
multiple vendors

● Critical feature is that these new parts:
● Are byte addressable
● Do not lose state on power failure

● Critical similarities are that they are roughly like 
DRAM:
● Same cost point
● Same density
● Same performance



  

Similarities to DRAM

● If the parts are the same cost and capacity of DRAM
● Will not reach the same capacity as traditional, 

spinning hard drives
● Scaling up to a system with only persistent memory  

will be expensive
● Implies a need to look at caching and tiered storage 

techniques
● Same performance as DRAM

● IO performance scales with the number of parts
● Will press our IO stack to reach the maximum 

performance of PM 
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Persistent Memory & Byte Aligned 
Access

● DRAM is used to cache all types of objects – file 
system metadata and user data
● Moving away from this model is a challenge
● IO sent in multiples of file system block size 
● Rely on journal or btree based updates for consistency 
● Must be resilient over crashes & reboots
● On disk state is the master view & DRAM state differs

● These new devices do not need block IO



  

SMR Overview

● A new areal density enabling technology called 
Shingled Magnetic Recording (SMR)
● Industry vendors are working collaboratively on 

external interfaces
● Vendors will differentiate on implementations

● SMR alters throughput and response time
● Especially for random write IO

● Industry is looking for feedback from the Linux 
community on T10 proposals



  



  

SMR Drive Write Bands

● Random write enabled bands
● Might not exist at all on some implementations
● Could be first and last band
● Place to store metadata, bitmaps, etc

● Sequential write bands
● Can be written only in order
● Write pointer is tracked per band
● Full band reset done when a band's data is all stale



  



  

Current Area of Focus
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Device Driver Choice
● Will one driver emerge for PCI-e cards?

● NVMe: http://www.nvmexpress.org

● SCSI over PCI-e: http://www.t10.org/members/w_sop-.htm

● Vendor specific drivers
● Most Linux vendors support a range of open drivers

● Open vs closed source drivers
● Linux vendors have a strong preference for open 

source drivers
● Drivers ship with the distribution - no separate 

installation
● Enterprise distribution teams can fix code issues 

directly

http://www.nvmexpress.org/
http://www.t10.org/members/w_sop-.htm


  

Scaling Up File Systems

● Support for metadata checksumming
● Makes file system repair and corruption detection 

easier
● Support for backpointers

● Btrfs can map sector level errors back to meaningful 
objects

● Let's users turn map an IO error into knowledge about 
a specific file for example



  

Making BTRFS Ready for Enterprise 
Users

● Slowing the inclusion of new features
● Focus on bug fixing and performance enhancements
● Fixing static analysis reported bugs

● Chris Mason is releasing a new, more powerful 
version of the btrfs user space tools

● Extensive enterprise vendor testing
● Focus on most promising use cases



  

Ease of Use

● Linux users have traditional been given very low level 
tools to manage our storage and file systems
● Very powerful and complicated interface
● Well suited to sophisticated system administrators

● Too complicated for casual users
● Exposes too much low level detail
● User must manage the individual layers of the stack
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High Level Storage Management Projects

● Storage system manager project
● CLI for file systems 
● http://storagemanager.sourceforge.net

● openlmi allows remote storage management
● https://fedorahosted.org/openlmi/
● http://events.linuxfoundation.org/images/stories/slides/l

fcs2013_gallagher.pdf
● Ovirt project focuses on virt systems & their storage

● http://www.ovirt.org/Home
● Installers like yast or anaconda

http://storagemanager.sourceforge.net/
https://fedorahosted.org/openlmi/
http://events.linuxfoundation.org/images/stories/slides/lfcs2013_gallagher.pdf
http://events.linuxfoundation.org/images/stories/slides/lfcs2013_gallagher.pdf
http://www.ovirt.org/Home
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Low Level Storage Management Projects

● Blivet library provides a single implementation of 
common tasks

● Higher level routines and installers will invoke blivet
●  https://git.fedorahosted.org/git/blivet.git
● Active but needs documentation!

● libstoragemgt provides C & Python bindings to manage 
external storage like SAN or NAS

● http://sourceforge.net/p/libstoragemgmt/wiki/Home
● Plans to manage local HBA's and RAID cards

● Liblvm provides C & Python bindings for device 
mapper and lvm

● Project picking up after a few idle years

https://git.fedorahosted.org/git/blivet.git
http://sourceforge.net/p/libstoragemgmt/wiki/Home
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Future Red Hat Stack Overview

Kernel

Storage Target

Low Level Tools:
LVM,

Device Mapper,
FS Utilities

Anaconda
Storage System
Manager (SSM)

Vendor Specific Tools
Hardware RAID
Array Specific

OVIRT OpenLMI

LIBSTORAGEMGT

BLIVET

LIBLVM



  

Getting Read for Persistent Memory

●  Application developers are slow to take advantage of 
new hardware
● Most applications will continue to use read/write “block 

oriented” system calls for years to come
● Only a few, high end applications will take advantage 

of the byte addressable capabilities
● Need to hide the persistent memory  below our 

existing stack
● Make it as fast and low latency as possible!



  

Persistent Memory Current Work

● Block level driver for persistent memory parts
● Best is one driver that supports multiple types of parts
● Multiple, very early efforts

● Enhance performance of IO path
● Leverage work done to optimize stack for PCI-e SSD's
● Target: millions of IOP's?

● Build on top of block driver
● Block level caching
● File system or database journals?
● As a metadata device for device mapper, btrfs?



  

Persistent Memory Standards

● Storage Network Industry Association (SNIA) 
Working Group on NVM
● Working on a programming model for PM parts
● http://snia.org/forums/sssi/nvmp

● New file systems for Linux being actively worked on
● Will be as painful as multi-threading or teaching 

applications to use fsync()!
● Fsync() live on

– Volatile data lives in CPU caches and needs flushed

http://snia.org/forums/sssi/nvmp


  

Handling Drive Managed SMR

● Have the drive vendors simply hide it all from us!

● Vendors need to add hardware and software
● Must to virtual to physical remapping similar in some 

ways to SSD vendors
● Will increase the costs of each drive
● Hard to get the best performance

● Some vendors are shipping these SMR drives today

● No changes needed for Linux or other OS platforms



  

Host Aware SMR

● Host is aware of SMR topology at some layer
● Avoids sending writes that break the best practices for 

SMR
● Write that violates SMR have unpredictable (probably 

low!) performance
● Allows drives to minimize hardware/software and 

have reasonable performance as long as most writes 
behave

● Works with existing operating system stack



  

Restricted SMR

● Host is aware of SMR topology
● Only write IO's that follow the SMR rules are allowed
● Non-obedient writes will be rejected by the SMR drive

● Minimal hardware and software needed on the SMR 
drive
● All of the effort is shifted to the operating system stack

● Would not work with existing operating systems and 
file systems in most cases



  

SMR Ongoing Work

● Make an SMR device mapper target to hide device 
from file systems
● Might support the restricted mode SMR

● Tweak and tune existing file systems to write mostly 
sequentially
● Would be the quickest path forward
● Would support host aware



  

Bringing SMR and PM Together

● Use the persistent memory as a block level caching 
device
● SMR drive (or RAID stripe of SMR drives) as high 

capacity bulk storage
● Persistent memory only client machines

● Access bulk data via NFS or iSCSI on high capacity 
servers with SMR drives

● Application level combinations
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Resources & Questions

● Resources
● Linux Weekly News: http://lwn.net/
● Mailing lists like linux-scsi, linux-ide, linux-fsdevel, etc

● SNIA NVM TWG
● http://snia.org/forums/sssi/nvmp

● Storage & file system focused events
● LSF workshop
● Linux Foundation & Linux Plumbers Events

http://lwn.net/
http://snia.org/forums/sssi/nvmp
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